

Responsible Disruption: What Engineers Need to Know about Digital Transformation

Speakers

Licensed Professional Engineer and industrial cybersecurity SME. Board Member and past president of ISA.

Over 40 years experience; leads Scientific Technical Services helping companies increase performance while improving safety and integrity through the application of technology and process improvement.

Licensed Professional Engineer with 40+ years of experience in automation, instrumentation, and process control design and applications, for engineering & design firms, manufacturers, and service providers.

Our Agenda Today

Dave Lafferty

Digital Transformation

What is it?

 Digital Transformation is fundamentally changing how an organization operates by the adoption of digital technology to increase value through innovation, invention, customer experience, or efficiency

Types of Digitalization

Digitalization Digitize Existing Workflow Clipboard to Handhelds

Digital Transformation

Transform the Way Business is Conducted through Digital Tools Management by Exception

Low

Impact

Industry 4.0

Industry 4.0 is about using digital to gain a competitive advantage, much like steam engines, assembly lines, and industrial robots did in previous industrial revolutions.

But it may not necessarily include changing behavior.

Digital TransformationWhy?

- Rate of change has accelerated
- Reduced time to market
- Improve quality
- Positive culture improvement
- Enhanced customer experience

Yellow Cab, Kodak, etc. 5-10 product cycles to 18 months Swift, incremental increases to quality Accept and encourage innovation

Digital Transformation

Benefits

- Remain competitive
- End geographic barriers
- Increase employee retention
- Improve customer experience
- Rapid, data-driven decision making

Steve Mustard

ISA

Implementation

Hard

Easy

Digital Less paper Better quality dat

Digitalization

Increased efficiency

Evolution in the Oil & Gas Industry

Digital Transformation

Change business processes

Impact

Digital

- A digital twin is an electronic replica of a real facility, built using key engineering data:
 - 3D models, 2D drawings, asset attributes
- Can integrate with other systems of record in real time to allow visualization of information in a more meaningful context
- Allows users to make decisions more quickly and reliably
- Reduces the need to be physically at the facility, improving safety and reducing travel costs

Digitalization

- Using technology to allow users to:
 - Access documentation from central repositories
 - Allow recording of measurements, readings, etc.
 - Associate information with specific locations to make reporting easier

Digital Transformation

- Artificial Intelligence is a field of computing that aims to design computer systems that mimic human intelligence
- Machine Learning is a key element in AI which allows the computer to learn on its own
- Significantly reduces the need for manual analysis
- Allows early identification of potential issues that might otherwise be missed
- Repeatable and without human bias

Scott Sommer

Digital Transformation It's not a project. It's a journey.

Culture and People

- Digital Transformation involves using digital technology to change the way (workflow) how an organization does business
- This journey involves much more than just the technology:
 - Technology
 - People & Culture
 - Business Capabilities
 - Regulatory Considerations

Roadmap

• "The Roadmap" - benchmark your progress toward digital maturity

- Define projects and initiatives to progress toward digital maturity
- Periodically reassess progress priorities will change over time!

Roadblocks

- The desire for Digital Transformation is there, but roadblocks may exist:
 - Legacy Systems
 - Lack of Funding
 - Competing Priorities
 - Regulatory Challenges
 - Organizational Structure Friction
 - Misalignment of Business IT and Manufacturing OT
 - Risk-Adverse Culture

Unblock that Road! (1)

What can engineers do to help facilitate a company's digital transformation?

Develop a use case:

Use Case Example

Vendor Equipment Package – Chiller Skid with 2 Chillers

- Currently hardwired to control system
 - Status
 - Alarm
 - Outlet temperature
- Wish to connect to Chiller package with TCP/IP interface
 - Bring in package controller data to control system
 - Use data for analysis of performance trends over time

Use Case Example: Manufacturing Support

Level 1 Pre-Digital Plant	Level 2 Digital Silos	Level 3 Connected Plant	Level 4 Predictive Plant	Level 5 Adaptive Plant
Plant matured past this level	Partially describes my Plant	Does not describe my plant	Does not describe my plant	Does not describe my plant
 Primarily manual processing and paper-based processes. 	• Automated systems used for most processes listed in Level 1.	Integrated global applications are used for all processes listed in Level 1, with data usage standardized across sites.	Predictive analytics use real-time sensor data and machine learning to optimize utility and building operations.	 The plant operates largely autonomously and automatically adapts to changing conditions.
Basic PLC controls for utilities.	• Limited integration and data transfer between systems.	Training records are integrated into operational systems so operators can only perform tasks for which they're trained and qualified.	Virtual reality provides an immersive training experience.	 Equipment is plug-n-play, self-calibrating and self- diagnosing.
 Paper or spreadsheet for spare parts, maintenance, and calibration. 	• Many systems are specific to the site, or are used differently at the site than at other sites.	3D facilities documentation is used for new design and construction.	3D facilities documentation (a "digital twin" of the plant) is integrated into maintenance, change control, training, and operational systems.	Zero unplanned downtime.
 Paper or spreadsheet for employee training records and safety incident tracking. 	• Gaps are filled with spreadsheets or similar personal productivity tools.	Utilities control systems feed into an integrated Cockpit for remote monitoring, alerting, and control.	O Human shop floor activities are guided by the digital plant model and augmented reality.	Utilities, building, and energy management are Self-optimizing. Remote (off-site) monitoring is the norm.
 Paper or spreadsheet for environmental monitoring plans, sample tracking, and results. 		Condition-based maintenance. Initial efforts at predictive maintenance.	O Predictive maintenance.	Routine maintenance and calibration tasks are O performed automatically without human intervention.

100%	38%	10%	0%	0%
------	-----	-----	----	----

Use Case Example: People Support

Level 1 Pre-Digital Plant	Level 2 Digital Silos	Level 3 Connected Plant	Level 4 Predictive Plant	Level 5 Adaptive Plant
Plant matured past this level	Fully describes my Plant	Partially describes my Plant	Does not describe my plant	Does not describe my plant
Culture focused on paper processes and forms.	Operators and supervisors are becoming technically knowledgable and support adoption of digital solutions.	Business personnel are thought leaders who encourage the application of digital technology and rely on technology in their operations.	Business partners expect digital technology to enable achievement of their strategic goals (for example, to increase production capacity).	O Business partners rely on and trust technology to autonomously operate the plant.
 Operators and supervisors design and execute paper processes. 	 Technology capabilities are site based, not centrally harmonized. 	Operators and supervisors work with a complex set of integrated systems and equipment.	Personnel must understand data qualty and analytics, and evaluate when to rely on predictive analytics and when to challenge.	Most site roles are performed by on-site mobile autonomous systems or remote operators and experts.
 IT and Automation (OT) are viewed as support personnel who add limited value to the business. 	• IT and Automation (OT) are viewed as service providers.	User interfaces are designed with the end use in mind (user-centric design).	Systems allow for personalized user O experiences; new displays can be built by users quickly.	Remote experts use telepresence and work through on-site mobile autonomous systems. On- site personnel work alongside mobile robots.
● IT customer service is reactive.	There are minimal standard reporting capabilities. Site personnel rely on IT to obtain data and information from systems.	• IT and Automation (OT) cultures and processes start to converge.	C End users engage in self-service knowledge management.	Facilities are designed to allow mobile autonomous systems to access all areas of the plant.
		·	·	Local staff are needed for complex, unexpected, urgent situations such as regulatory inspection, safety incident, natural disaster, civil unrest.

	100%	75%	13%	0%	0%
--	------	-----	-----	----	----

Unblock that Road! (2 and 3)

What can engineers do to help facilitate a company's digital transformation?

- Identify Stakeholders
 - Management
 - Operations
 - IT
 - Engineering
 - Regulatory Agencies

- Develop a Roadmap
 - Project Progression
 - Define Scope, Cost, Value
 - Determine Success Criteria
 - Determine Risk

Unblock that Road! (4)

What can engineers do to help facilitate a company's digital transformation?

Unblock that Road! (5)

What can engineers do to help facilitate a company's digital transformation?

Assessment and Identify Next Steps:

- Were objectives met?
- Cost and Schedule on target?
- Value returned to company?

Your Questions

More on Digital Transformation

Other Resources from ISA

Digital Transformation Training Series

- Provides you with all the tools necessary to actively and efficiently participate in digital transformation projects at your plant site or organization
- NOW AVAILABLE: Introduction to IIoT The Industrial Internet of Things (DT101)
- Self-paced modular course, sign up any time at

https://www.isa.org/products/introduction-to-iiot-theindustrial-internet-of-th

More on Digital Transformation

Other Resources from ISA

Upcoming Events – join us in person or virtually – <u>www.isa.org/events</u>

OT Cybersecurity Summit

Aberdeen, Scotland | 31 May – 1 June

Digital Transformation Brazil

Brazil | September

Automation & Leadership Conference Colorado Springs, USA | 4-6 October

Digital Transformation Asia Pacific Australia | November

International Society of Automation Setting the Standard for AutomationTM

Thank you!